

USATRIATHLON.ORG

Time Constrained Training：

Implementing strength and conditioning for a triathlete when time is limited

By Derek Grabert，MS，CSCS，＊D

Objectives

- Triathlon needs analysis
- Priorities

1) Swim, bike, run
2) Everything else

- Benefits of strength/power to triathletes
- Injury prevention and muscle imbalances
- Time management
- Sample programs

Needs Analysis

- Evaluate sport and athlete
- Physiology
- Aerobic and anaerobic components
- Lactate threshold
- Injury
- Movement/biomechanics
- Training status
- Novice/intermediate/advanced
- Determine training priorities and goals

$[16)^{4}$ TRIAWHLON

Training Priorities

- Will vary amongst athletes
- Aerobic capacity will likely be a strength*
- Body composition not usually a problem
- Swimming often the most difficult component
- Endurance training (biking and running) usually trumps resistance training
- Flexibility training is frequently ignored

Common Errors for Training Endurance Athletes

- Too much:
- muscular endurance training
- anterior chain strengthening
- Not enough:
- posterior chain strengthening
- load
- flexibility training
- rest
- tapering

What influences triathlon performance?

- Schabort et al. Med Sci Sports Exerc.
- Top 3 factors affecting overall performance in national level triathletes:

1. oxygen uptake
2. blood lactate concentration
3. running velocity

- Question: How do you improve these factors?

Priority List for Tri Performance

Aerobic Training

- Swim, bike, run
- Long slow-distance (LSD)
- Interval Training -\% $\mathrm{HR} / \mathrm{VO}_{2}$ training intensities) and recovery periods
- Goal is to improve/maintain
 aerobic capacity

Interval Training

- Assists with ability to tolerate and clear lactate
- Cycling cadence and power
- Running velocity
- Intensity calculated by several methods
- $\% \mathrm{VO}_{2}$ max
- Range of $60-170 \%$? (Laursen et al.)
- \%Max heart rate
- Correlates almost linearly with VO_{2} (Achten et al.)
- Lactate threshold
- Anaerobic threshold
- RPE

Achten and Jeukendrup, 2003
Balardi et al. 2007
Laursen and Jenkins, 2002

Interval Training (cont.)

Helgerud et al. 2007

$\mathrm{VO}_{2} \max \left(\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$

- Inconclusive evidence on the effects of LSD aerobic activity versus interval training at improving VO2 max
- Too many variables to account for (work, rest, distance, etc.)
- Time limitations may warrant more interval training
- 1:1 work:rest ratio improves V02 max

Lactate

- Highest running velocity during active recovery = best time in short/Olympic triathlon
- IVT-50\% Δ T is the percentage of anaerobic threshold ideal for lactate clearance

Resistance Training

- Power emphasis
(speed)
OR
- Strength emphasis (load)
- Periodization
- Tapering

Resistance vs. Endurance Training

Benefits of Resistance Training for Triathletes

- Strength and power output
- Running and cycling economy
- Muscle cell size and properties
- Recovery
> 'Since faster, larger and stronger (muscle) fibres generate more force, resistance-trained (athletes) may be able to exercise longer at each absolute submaximal work rate by reducing the force contribution from each active myofibre or by using fewer of them." -Tanaka \& Swensen

Generating Strength and Power

- Strength training may counteract the effects of endurance training
- Endurance training lowers force-generating capabilities
Strength training leads to more efficiency/economy in running and cycling
- Paton et al. 2006
- Paavoleainen et al. 1999
- Johnston et al. 1997

Economy

- Economy = efficiency
- Submaximal running on a treadmill
- Measure stable oxygen uptake and heart rate - Decrease in submax
VO_{2} denotes an effect Decrease in submax
VO_{2} denotes an effect
 Ant

Saunders et al. 2004
Paavoleainen et al. 1999

Muscle Fiber Characteristics

Anaerobic

Aerobic

type IIb (IIx)

- Strength training AND endurance training cause Type IIb (IIx) \rightarrow Type IIa transformation
- Strength training can benefit endurance training without detriment; endurance training is catabolic and negatively impacts strength/power

Tanaka et al.,01998

Injury Prevention

- Common injuries
- lower back injury
- Knee (patellofemoral, medial tibial,
- shoulder
- IT band
- plantar fascitis
- stress fracture
- May be caused by muscle imbalances

- Core training
- Posterior chain exercises
- Hip and shoulder mobility
- Warm up/Cool down
- RECOVERY

Manninen and Kallinen, 1996
Cosca and Navazio, 2007

Example Resistance Training Program Pre/Off-season

Day 1	$5-7$ minutes
General warm-up variety of hip mobility, ankle mobility, scapular mobility, glute activation and hamstring activation	3×12 3×10
Specific warm-up: -Glute bridges -inverted row (or resistance band row)	5×4
Core Lifts Power clean (or power loaded jumps)	5×6
Jump Squat (or plyometric depth jumps)	$3 \times 8-10$
Accessory Lifts *DB Press	$3 \times 8-10$
*Bent over row	30 seconds per
*Planks, med ball throws	

Day 2					
General warm-up Similar to day 1	$5-7$ minutes				
Specific warm-up: -1 leg squats -push-ups	3×8 each leg 3×12				
Core Lifts Squat or alt (barbell, dumbell, leg press, step up)	5×6				
Deadlifts or alt (single leg, double leg, Romanian)	5×6 per leg				
Accessory Lifts *Dips or tricep extensions	$3 \times 10-12$	$	$	*Lat-pull downs or pull-ups	30 seconds per exercise
:---	:---				
*Russian twists, side planks					

Plan for the Long Term

Macrocycle

Training Volume

- Olympic level triathletes are training 500-700 hours/year
- 60-70\% \rightarrow endurance and over-distance training
- Aerobic metabolism
- Fat oxidation
- Mitochondrial density

- $30-40 \% \rightarrow$ interval training, strength training, power training, flexibility training
- Hours per week (more appropriate for offseason)
- Beginner: <10 hrs
- Intermediate: $10-15 \mathrm{hrs}$
- Advanced: >15 hours

Off-season
 ~28 weeks

- Focus is on base building and strength development
- Aerobic exercise is composed of long distance, slower than race pace
- Highest volume of resistance training

Sleamaker and Browning, 1996

Pre-season

4-8 weeks

- Slight decrease in resistance training
- Increase sport specific interval training
- High intensity hill climbs, sprints, 50100 m swims
- 1:1 work:rest ratio
- Low-intensity aerobic training volume remains similar

Training Volume

Sleamaker and Browning, 1996

In-season

12-16 weeks

- Small amount of resistance training
- 1-2 hrs per week
- Recovery is important

Training Volume

- Maintenance phase

Questions to Ask Under Time Constraints

- What is the season?
- When is the next competition?
- What is the training priority?
- Is there a risk of overtraining?
- How are the nutrition and recovery plans?

Final question: Can you account for "all" training variables?

References

Achten, J, and Jeukendrup, AE. Heart rate monitoring: applications and limitations. Sports Med 33(7): 517-38, 2003.
Baldari, C, Di Luigi, L, Silva, SG, Gallotta, MC, Emerenziani, GP, Pesce, C, and Guidetti, L. Relationship between optimal lactate removal power output and Olympic triathlon performance. J Strength Cond Res 21(4): 1160-5, 2007.
Burke, J, Thayer, R, and Belcamino, M. Comparison of effects of two interval-training programmes on lactate and ventilatory thresholds. Br J Sports Med 28(1): 18-21, 1994.
Cosca, DD, and Navazio, F. Common problems in endurance athletes. Am Fam Physician 76(2): 237-44, 2007.

Daniels, J, and Scardina, N. Interval training and performance. Sports Med 1(4): 327-34, 1984.
Helgerud, J, Hoydal, K, Wang, E, Karlsen, T, Berg, P, Bjerkaas, M, Simonsen, T, Helgesen, C, Hjorth, N, Bach, R, and Hoff, J. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 39(4): 665-71, 2007.
Jackson, NP, Hickey, MS, and Reiser, RF, 2nd. High resistance/low repetition vs. low resistance/high repetition training: effects on performance of trained cyclists. J Strength Cond Res 21(1): 289-95, 2007.
Laursen, PB, and Jenkins, DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med 32(1): 5373, 2002.

USA
TRMATHLON

References

- Macpherson, RE, Hazell, TJ, Olver, TD, Paterson, DH, and Lemon, PW. Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exerc 43(1): 115-22, 2011.
- Manninen, JS, and Kallinen, M. Low back pain and other overuse injuries in a group of Japanese triathletes. Br J Sports Med 30(2): 134-9, 1996.
- Paavolainen, L, Hakkinen, K, Hamalainen, I, Nummela, A, and Rusko, H. Explosive-strength training improves $5-\mathrm{km}$ running time by improving running economy and muscle power. J Appl Physiol 86(5): 1527-33, 1999.
- Paton, CD, and Hopkins, WG. Combining explosive and high-resistance training improves performance in competitive cyclists. J Strength Cond Res 19(4): 826-30, 2005.
- Saunders, PU, Pyne, DB, Telford, RD, and Hawley, JA. Factors affecting running economy in trained distance runners. Sports Med 34(7): 465-85, 2004.
- Schabort, EJ, Killian, SC, St Clair Gibson, A, Hawley, JA, and Noakes, TD. Prediction of triathlon race time from laboratory testing in national triathletes. Med Sci Sports Exerc 32(4): 844-9, 2000.
- Sleamaker, R. and Browing, R. Serious Training for Endurance Athletes. (2 ${ }^{\text {nd }}$ ed.) Champaign, IL: Human Kinetics; 1996.
- Tanaka, H, and Swensen, T. Impact of resistance training on endurance performance. A new form of cross-training? Sports Med 25(3): 191-200, 1998.

USA
TRIATHION

