

Time Constrained Training:

Implementing strength and conditioning for a triathlete when time is limited

By Derek Grabert, MS, CSCS,*D

Objectives

Triathlon needs analysis

- Priorities
 - 1) Swim, bike, run
 - 2) Everything else
- Benefits of strength/power to triathletes
- Injury prevention and muscle imbalances
- Time management
- Sample programs

Needs Analysis

- Evaluate sport and athlete
 - Physiology
 - Aerobic and anaerobic components
 - Lactate threshold
 - Injury
 - Movement/biomechanics
 - Training status
 - Novice/intermediate/advanced
- Determine training priorities and goals

Training Priorities

- Will vary amongst athletes
- Aerobic capacity will likely be a strength*
- Body composition not usually a problem
- Swimming often the most difficult component
- Endurance training (biking and running) usually trumps resistance training
- Flexibility training is frequently ignored

Common Errors for Training Endurance Athletes

- Too much:
 - muscular endurance training
 - anterior chain strengthening
- Not enough:
 - posterior chain strengthening
 - load
 - flexibility training
 - rest
 - tapering

What influences triathlon performance?

- Schabort et al. Med Sci Sports Exerc.
 - Top 3 factors affecting overall performance in national level triathletes:
 - 1. oxygen uptake
 - 2. blood lactate concentration
 - 3. running velocity
- Question: How do you improve these factors?

Priority List for Tri Performance

Aerobic Training

- Swim, bike, run
 - Long slow-distance (LSD)
- Interval Training -%
 HR/VO₂ training
 intensities) and recovery
 periods
- Goal is to improve/maintain aerobic capacity

Interval Training

- Assists with ability to tolerate and clear lactate
- Cycling cadence and power
- Running velocity
- Intensity calculated by several methods
 - %VO₂ max
 - Range of 60-170%? (Laursen et al.)
 - %Max heart rate
 - Correlates almost linearly with VO₂ (Achten et al.)
 - Lactate threshold
 - Anaerobic threshold
 - RPE

Achten and Jeukendrup, 2003 Balardi et al. 2007 Laursen and Jenkins, 2002

Interval Training (cont.)

- <u>Inconclusive</u> evidence on the effects of LSD aerobic activity versus interval training at improving VO2 max
 - Too many variables to account for (work, rest, distance, etc.)
- Time limitations may warrant more interval training
- 1:1 work:rest ratio improves V02 max

Burke et al. 1994
Helgerud et al. 2007
Machpherson et al. 2011

Lactate

- Highest running velocity during active recovery = best time in short/Olympic triathlon
- IVT-50%ΔT is the percentage of anaerobic threshold ideal for lactate clearance

Resistance Training

Power emphasis (speed)

OR

- Strength emphasis (load)
- Periodization
- Tapering

5015 · 5015 · 5015 · 5015 · 5015 ·

Resistance vs. Endurance Training

Adaptation	Resistance Training	Endurance Training
Mitochondrial Density	-	
Capillary Density	or 😝	
Muscle Fiber Hypertrophy		Type I or
Aerobic Capacity		
Muscle Force		-

OF TRIATHLON
2012 INTERNATIONAL COACHING SYMPOSIUM

Tanaka et al., 1998

Benefits of Resistance Training for Triathletes

- Strength and power output
- Running and cycling economy
- Muscle cell size and properties
- Recovery

"Since faster, larger and stronger (muscle) fibres generate more force, resistance-trained (athletes) may be able to exercise longer at each absolute submaximal work rate by reducing the force contribution from each active myofibre or by using fewer of them." -Tanaka & Swensen

Generating Strength and Power

- Strength training may counteract the effects of endurance training
 - Endurance training lowers force-generating capabilities

Strength training leads to more efficiency/economy in running and cycling

- Paton et al. 2006
- Paavoleainen et al. 1999
- Johnston et al. 1997

Economy

- Economy = efficiency
- Submaximal running on a treadmill
 - Measure stable oxygen uptake and heart rate
- Decrease in submax
 V0₂ denotes an effect

Saunders et al. 2004 Paavoleainen et al. 1999

Muscle Fiber Characteristics

Anaerobic

Aerobic type IIb (IIx)

type IIa

type II

- Strength training AND endurance training cause Type IIb (IIx)→ Type IIa transformation
- Strength training can benefit endurance training without detriment;
 endurance training is catabolic and negatively impacts strength/power

Injury Prevention

- Common injuries
 - lower back injury
 - Knee (patellofemoral, medial tibial,
 - shoulder
 - IT band
 - plantar fascitis
 - stress fracture
- May be caused by muscle imbalances
- Core training
- Posterior chain exercises
- Hip and shoulder mobility
- Warm up/Cool down
- RECOVERY

Manninen and Kallinen, 1996 Cosca and Navazio, 2007

Example Resistance Training Program Pre/Off-season

Day 1		
General warm-up variety of hip mobility, ankle mobility,	5-7 minutes	
scapular mobility, glute activation and hamstring activation		
Specific warm-up:		
-Glute bridges	3 x 12	
-inverted row (or resistance band row)	3 x 10	
Core Lifts		
Power clean (or power loaded jumps)	5 x 4	
Jump Squat (or plyometric depth jumps)	5 x 6	
Accessory Lifts		
*DB Press	3 x 8-10	
*Bent over row	3 x 8-10	
*Planks, med ball throws	30 seconds per	
	exercise	

OF TRIATHLON
2012 INTERNATIONAL COACHING SYMPOSIUM

Day 2	
General warm-up	5-7 minutes
Similar to day 1	
Specific warm-up:	
-1 leg squats	3 x 8 each leg
-push-ups	3 x 12
Core Lifts	
Squat or alt (barbell, dumbell, leg press, step up)	5 x 6
Deadlifts or alt (single leg, double leg, Romanian)	5 x 6 per leg
Accessory Lifts	
*Dips or tricep extensions	3 x 10-12
*Lat-pull downs or pull-ups	3 x 8-10
*Russian twists, side planks	30 seconds per
	exercise

5075 - 5075 - 5075 - 5075 - 5075 - 5075 - 5075 - 5075 - 5075

Plan for the Long Term

Macrocycle

Training Volume

- Olympic level triathletes are training 500-700 hours/year
- 60-70% → endurance and over-distance training
 - Aerobic metabolism
 - Fat oxidation
 - Mitochondrial density
- 30-40%→ interval training, strength training, power training, flexibility training
- Hours per week (more appropriate for offseason)
 - Beginner: <10 hrs
 - Intermediate: 10-15 hrs
 - Advanced: >15 hours

Sleamaker and browning, 1996.

Off-season

~28 weeks

- Focus is on base building and strength development
- Aerobic exercise is composed of long distance, slower than race pace
- Highest volume of resistance training

Training Volume

Sleamaker and Browning, 1996

5075 - 5075 - 5075 - 5075 - 5075 - 5075

Pre-season

4-8 weeks

- Slight decrease in resistance training
- Increase sport specific interval training
 - High intensity hill climbs, sprints, 50-100m swims
 - 1:1 work:rest ratio
- Low-intensity aerobic training volume remains similar

Training Volume

Sleamaker and Browning, 1996

In-season

12-16 weeks

- Small amount of resistance training
 - 1-2 hrs per week
- Recovery is important
- Maintenance phase

Training Volume

5015 - 5015 - 5015 - 5015 - 5015 - 5015 - 5015

Sleamaker and Browning, 1996

Questions to Ask Under Time Constraints

- What is the season?
- When is the next competition?
- What is the training priority?
- Is there a risk of overtraining?
- How are the nutrition and recovery plans?

Final question: Can you account for "all" training variables?

References

Achten, J, and Jeukendrup, AE. Heart rate monitoring: applications and limitations. *Sports Med 33(7):* 517-38, 2003.

Baldari, C, Di Luigi, L, Silva, SG, Gallotta, MC, Emerenziani, GP, Pesce, C, and Guidetti, L. Relationship between optimal lactate removal power output and Olympic triathlon performance. *J Strength Cond Res* 21(4): 1160-5, 2007.

Burke, J, Thayer, R, and Belcamino, M. Comparison of effects of two interval-training programmes on lactate and ventilatory thresholds. *Br J Sports Med 28(1): 18-21, 1994.*

Cosca, DD, and Navazio, F. Common problems in endurance athletes. *Am Fam Physician 76(2): 237-44, 2007.*

Daniels, J, and Scardina, N. Interval training and performance. Sports Med 1(4): 327-34, 1984.

Helgerud, J, Hoydal, K, Wang, E, Karlsen, T, Berg, P, Bjerkaas, M, Simonsen, T, Helgesen, C, Hjorth, N, Bach, R, and Hoff, J. Aerobic high-intensity intervals improve VO2max more than moderate training. *Med Sci Sports Exerc* 39(4): 665-71, 2007.

Jackson, NP, Hickey, MS, and Reiser, RF, 2nd. High resistance/low repetition vs. low resistance/high repetition training: effects on performance of trained cyclists. *J Strength Cond Res* 21(1): 289-95, 2007.

Laursen, PB, and Jenkins, DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. *Sports Med 32(1): 53-73, 2002.*

2015 · 5015 · 5015 · 5015 · 5015 · 5015 · 5015 · 5015 · 5015

References

- Macpherson, RE, Hazell, TJ, Olver, TD, Paterson, DH, and Lemon, PW. Run sprint interval training improves aerobic performance but not maximal cardiac output. *Med Sci Sports Exerc 43(1): 115-22, 2011.*
- Manninen, JS, and Kallinen, M. Low back pain and other overuse injuries in a group of Japanese triathletes. Br J Sports Med 30(2): 134-9, 1996.
- Paavolainen, L, Hakkinen, K, Hamalainen, I, Nummela, A, and Rusko, H. Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol 86(5): 1527-33, 1999.
- Paton, CD, and Hopkins, WG. Combining explosive and high-resistance training improves performance in competitive cyclists. J Strength Cond Res 19(4): 826-30, 2005.
- Saunders, PU, Pyne, DB, Telford, RD, and Hawley, JA. Factors affecting running economy in trained distance runners. Sports Med 34(7): 465-85, 2004.
- Schabort, EJ, Killian, SC, St Clair Gibson, A, Hawley, JA, and Noakes, TD. Prediction of triathlon race time from laboratory testing in national triathletes. Med Sci Sports Exerc 32(4): 844-9, 2000.
- Sleamaker, R. and Browing, R. Serious Training for Endurance Athletes. (2nd ed.) Champaign, IL: Human Kinetics: 1996.
- Tanaka, H, and Swensen, T. Impact of resistance training on endurance performance. A new form of cross-training? Sports Med 25(3): 191-200, 1998.

